A Survey of Gait Recognition Approaches Using PCA & ICA

نویسندگان

  • M. Pushparani
  • D. Sasikala
چکیده

Human identification by gait has created a great deal of interest in computer vision community due to its advantage of inconspicuous recognition at a relatively far distance. Biometric systems are becoming increasingly important, since they provide more reliable and efficient means of identity verification. Biometric gait Analysis (i.e. recognizing people from the way they walk) is one of the recent attractive topics in biometric research. It has been receiving wide attention in the area of Biometric. In Gait biometric research there are various gait recognition approaches are available. In this paper, the gait recognition approaches such as “Wavelet Descriptor with ICA”, and “Hough transform with PCA” are compared and discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition Using Pca, Lda and Ica Approaches on Colored Images

In this paper, the performances of appearance-based statistical methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA) are tested and compared for the recognition of colored face images. Three sets of experiments are conducted for relative performance evaluations. In the first set of experiments, the recognition performanc...

متن کامل

Comparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks

The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...

متن کامل

Local Image Descriptors Using Supervised Kernel ICA

PCA-SIFT is an extension to SIFT which aims to reduce SIFT’s high dimensionality (128 dimensions) by applying PCA to the gradient image patches. However PCA is not a discriminative representation for recognition due to its global feature nature and unsupervised algorithm. In addition, linear methods such as PCA and ICA can fail in the case of non-linearity. In this paper, we propose a new discr...

متن کامل

Hybrid Approach to Face Recognition System using Principle component and Independent component with score based fusion process

Hybrid approach has a special status among Face Recognition Systems as they combine different recognition approaches in an either serial or parallel to overcome the shortcomings of individual methods. This paper explores the area of Hybrid Face Recognition using score based strategy as a combiner/fusion process. In proposed approach, the recognition system operates in two modes: training and cl...

متن کامل

Gaussian Mixture Model Coupled with Independent Component Analysis for Palmprint Verification

In this paper we present a new scheme for Palmprint verification. The proposed method can be viewed as a combination of Gaussian Mixture Model (GMM) followed by Independent Component Analysis (ICA I and ICA II) applied directly on the pixels. This approach follows the path opened by previous works making use of GMM followed by Principal Component Analysis (PCA) and Linear Discriminate Analysis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012